8.3 -A- Probability of events

Recall:

- Random experiment is one that depends entirely on chance.
- Sample space Ω (omega) is the set of all possible outcomes
- An Event is a subset of the sample space.
- Simple event: contains a single outcome from the sample space.
- Compound event: contains a series of simple events.

Determine the sample space for a random experiment
a) Your favorite subject in school.
$\Omega=$
b) Flipping a coin 3 times in a row
$\Omega=$
c) For rolling a die once
$\Omega=$
An event of "rolling a \# greater than 2" : corresponds to $\{3,4,5,6$)
A simple event is "rolling a 1 " because it corresponds to $\{1\}$

The probability can be a fraction, a decimal (between 0 and 1), or a percentage. (0 being impossible, and 1 being certain)

Theoretical Prob $=\frac{\# \text { of desired outcomes }}{\text { total \# of outcomes }}$

 Ex: P (randomly choosing a point in the dark sector) $=\frac{1}{4}$
Experimental Prob = \# of desired outcomes observed \# of trial runs

Ex: The experimental probability that a hockey team will win the Stanley cup is based on its performance in previous games.
$>$ The more times a random experiment is repeated, the closer the experimental probability gets to the theoretical probability y_{3}

What is the probability of picking the correct 6 numbers out of the 49 to win the Lotto 649 ? (order doesn't matter, and with no repetition)

$$
\text { Prob }=\frac{\# \text { of desired outcomes }}{\text { total \# of outcomes }}
$$

8 students are auditioning for a part in the school musical.
Adam, Bob, Carl, Dan, Ed, Frank, George, and Howard. If only 6 will be chosen, what is the probability that it will be: Bob, Carl, Dan, Ed, Frank and Howard?

$$
\text { Prob }=\frac{\# \text { of desired outcomes }}{\text { total \# of outcomes }}
$$

The AND of Probability: Think MULTIPLY

When 2 independent EVENTS happen in a row, the probability of event 1 AND event 2 occurring is the multiplication of the probability of each individual event. $P(A$ and $B)=P(A, B)=P(A) \cdot P(B)$
a) Drawing a Queen \& Rolling a 6.
b) Drawing a Spade \& Rolling an even \#.

The OR of Probability: Think ADD

When two independent events happen and one event OR the other is considered a success, the probability of either occurring is the ADDITION of the probabilities of each individual event.

$$
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

Find the probability

a) Rolling a 1, 2 or 4
b) Drawing a King or Jack

Determine the probability of picking
a) a RED or a GREEN marble

Determine the probability of picking
c) 2 RED marbles

b) 2 marbles with at least 1 BLUE marble

Draw a probability tree for picking 2 marbles from a bag, in order and without replacement. The bag contains 4 RED, 3 BLUE and 2 GREEN.

Red $\frac{4}{9}<\begin{aligned} \text { Red } \frac{3}{8} & =\left(\frac{4}{9}\right)\left(\frac{3}{8}\right)=\frac{12}{72} \\ \text { Blue } \frac{3}{8} & =\frac{12}{72} \\ \text { Green } \quad \frac{2}{8} & =\frac{8}{72}\end{aligned}$

The sum of all probabilities $=1$

d) 2 of the same colour twice

Determine the probability of picking
e) 2 Blue marbles one after the other and with replacement

f) a RED and a GREEN marble with replacement

Sophie has to take two exams. She estimates that she has a $\frac{1}{3}$ chance of passing the first exam and a $\frac{3}{5}$ chance of passing the second exam.

What is the probability of her passing only one exam?
A) $\frac{4}{15}$
B) $\frac{7}{15}$
C) $\frac{8}{15}$
D) $\frac{11}{15}$

